Significant involvement of PEP-CK in carbon assimilation of C4 eudicots.
نویسندگان
چکیده
BACKGROUND AND AIMS C4 eudicot species are classified into biochemical sub-types of C4 photosynthesis based on the principal decarboxylating enzyme. Two sub-types are known, NADP-malic enzyme (ME) and NAD-ME; however, evidence for the occurrence or involvement of the third sub-type (phosphoenolpyruvate carboxykinase; PEP-CK) is emerging. In this study, the presence and activity of PEP-CK in C4 eudicot species of Trianthema and Zaleya (Sesuvioideae, Aizoaceae) is clarified through analysis of key anatomical features and C4 photosynthetic enzymes. METHODS Three C4 species (T. portulacastrum, T. sheilae and Z. pentandra) were examined with light and transmission electron microscopy for leaf structural properties. Activities and immunolocalizations of C4 enzymes were measured for biochemical characteristics. KEY RESULTS Leaves of each species possess atriplicoid-type Kranz anatomy, but differ in ultrastructural features. Bundle sheath organelles are centripetal in T. portulacastrum and Z. pentandra, and centrifugal in T. sheilae. Bundle sheath chloroplasts in T. portulacastrum are almost agranal, whereas mesophyll counterparts have grana. Both T. sheilae and Z. pentandra are similar, where bundle sheath chloroplasts contain well-developed grana while mesophyll chloroplasts are grana deficient. Cell wall thickness is significantly greater in T. sheilae than in the other species. Biochemically, T. portulacastrum is NADP-ME, while T. sheilae and Z. pentandra are NAD-ME. Both T. portulacastrum and Z. pentandra exhibit considerable PEP-CK activity, and immunolocalization studies show dense and specific compartmentation of PEP-CK in these species, consistent with high PEP-CK enzyme activity. CONCLUSIONS Involvement of PEP-CK in C4 NADP-ME T. portulacastrum and NAD-ME Z. petandra occurs irrespective of biochemical sub-type, or the position of bundle sheath chloroplasts. Ultrastructural traits, including numbers of bundle sheath peroxisomes and mesophyll chloroplasts, and degree of grana development in bundle sheath chloroplasts, coincide more directly with PEP-CK recruitment. Discovery of high PEP-CK activity in C4 Sesuvioideae species offers a unique opportunity for evaluating PEP-CK expression and suggests the possibility that PEP-CK recruitment may exist elsewhere in C4 eudicots.
منابع مشابه
Towards an integrative model of C4 photosynthetic subtypes: insights from comparative transcriptome analysis of NAD-ME, NADP-ME, and PEP-CK C4 species
C4 photosynthesis affords higher photosynthetic carbon conversion efficiency than C3 photosynthesis and it therefore represents an attractive target for engineering efforts aiming to improve crop productivity. To this end, blueprints are required that reflect C4 metabolism as closely as possible. Such blueprints have been derived from comparative transcriptome analyses of C3 species with relate...
متن کاملEffects of the Phosphoenolpyruvate Carboxylase Inhibitor
The effect of 3,3-dichloro-2-(dihydroxyphosphinoylmethyl)propenoate (DCDP), an analog of phosphoenolpyruvate (PEP), on PEP carboxylase activity in crude leaf extracts and on photosynthesis of excised leaves was examined. DCDP is an effective inhibitor of PEP carboxylase from Zea mays or Pancum miliaceum; 50% inhibition was obtained at 70 or 350 micromolar, respectively, in the presence of I mil...
متن کاملPhotosynthetic flexibility in maize exposed to salinity and shade
C4 photosynthesis involves a close collaboration of the C3 and C4 metabolic cycles across the mesophyll and bundle-sheath cells. This study investigated the coordination of C4 photosynthesis in maize plants subjected to two salinity (50 and 100mM NaCl) treatments and one shade (20% of full sunlight) treatment. Photosynthetic efficiency was probed by combining leaf gas-exchange measurements with...
متن کاملPhotosynthesis of C3, C3–C4, and C4 grasses at glacial CO2
Most physiology comparisons of C3 and C4 plants are made under current or elevated concentrations of atmospheric CO2 which do not reflect the low CO2 environment under which C4 photosynthesis has evolved. Accordingly, photosynthetic nitrogen (PNUE) and water (PWUE) use efficiency, and the activity of the photosynthetic carboxylases [Rubisco and phosphoenolpyruvate carboxylase (PEPC)] and decarb...
متن کاملDe novo Transcriptome Assembly and Comparison of C3, C3-C4, and C4 Species of Tribe Salsoleae (Chenopodiaceae)
C4 photosynthesis is a carbon-concentrating mechanism that evolved independently more than 60 times in a wide range of angiosperm lineages. Among other alterations, the evolution of C4 from ancestral C3 photosynthesis requires changes in the expression of a vast number of genes. Differential gene expression analyses between closely related C3 and C4 species have significantly increased our unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Annals of botany
دوره 111 4 شماره
صفحات -
تاریخ انتشار 2013